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Abstract 

A procedure based on the mechanical properties of a modified anelastic element (MAE) has already been 
developed to get a functional dependence of the real and imaginary components of the dynamical modulus or 
compliance. The MAE is essentially a standard anelastic element except for its characteristic time, which depends 
on the frequency. The analysis of this dependence provides an analytical description of not only the dynamical 
properties but also the distribution function. 

In this work it is shown that the procedure can be extended to internal friction peaks, yielding not only the 
parameters of the distribution function but also the relaxation strength. This procedure is applied to various 
materials and the results are compared with a previous method proposed in the literature. 

1. Introduction 

In linear viscoelastic materials with a relaxation 
strength A << 1 the internal friction F is practically equal 
to the imaginary component of the dynamical modulus 
or compliance, namely G2 or J2 respectively. In this 
case F is characterized by A and by the distribution 
function derived from G2 or J2. Nevertheless, recently 
it has been demonstrated that even for large values of 
A a distribution function can be associated with F [1]. 

Since the distribution function is related to structural 
micromechanisms, several researchers have concen- 
trated on determining A and the parameters of the 
distribution from internal friction peaks measured as 
a function of temperature [2] or frequency [3]. In 
particular, the former peaks have been treated by 
Nowick and Berry, who developed a methodology [2] 
applicable to symmetrical internal friction peaks in 
order to determine the mean characteristic time Zm 
and the halfwidth/3 of a log-normal distribution. This 
distribution, which is statistically appropriate, has the 
disadvantage that the mechanical properties derived 
from it cannot be written in terms of known functions 
but must be calculated numerically. Because of this, 
a model based on the standard anelastic solid (SAS) 
(ref. 4, p. 48) but with a characteristic time that depends 
on the frequency was introduced to provide simple 
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analytical expressions for the dynamical moduli or com- 
pliances. Moreover, this modified anelastic element 
(MAE) leads to a symmetrical distribution function 
which is very similar to a log-normal distribution [5]. 

It is the purpose of this paper to show that the MAE 
can also be used to describe internal friction peaks, 
enabling us to calculate the relaxation strength as well 
as the parameters of the distribution. The methodology 
developed to determine these parameters will be applied 
to peaks measured as a function of temperature and 
frequency in various materials. 

2. Theory 

In a previous paper it has been shown that the real 
and imaginary components of a linear viscoelastic ma- 
terial can be expressed as [5] 

ao(D-6,(73 
Gl(w, T) = G,(T) - 1 + [oJr,(7)] 2r(7~ (1) 

"Y(D[Gu(T) - G r ( D ]  
G2= 2 cosh{~(T) ln[o~-,(T)]} (2) 

where Gu and G, are the unrelaxed and relaxed moduli 
respectively, z,(T) is the mean time of the distribution 
function and y or ~ - which both vary between zero 
and unity and may depend on the temperature - 
characterizes the halfwidth of the distribution. Even 
when y and ~ are not strictly equal, their difference 
is negligible, particularly for 0.5 ~< y, ~ < 1. This interval 
corresponds to symmetrical distributions similar to 
log-normals with 0 ~</3 < 3 [5]. 
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Taking into account that the internal friction F is 
the ratio between G2 and G1 and that the relaxation 
strength is A= (Gu-G,) /Gr,  eqns. (1) and (2) lead to 

F =  2 cosh[y ln(toz,)] 1 + (~or,) 2" (3) 

On defining 

r, = ~-,(1 + A) 1/2~ (4) 

and 

ra 
a =  (1 + A) l'z (5) 

eqn. (3) can be rewritten as 

0/ 
F = (6) 

2 cosh[y In(tot0] 

It should be noticed that eqn. (6) has the same form 
as the internal friction of an SAS but with a characteristic 
time that depends on the frequency as 

Tt(to , T)  = [T(D]"/ to  "Y-1 

i.e. eqn. (6) gives the analytical form of the internal 
friction of an MAE. 

Eqns. (4)-(6) are not sufficient to determine either 
the strength of relaxation or the parameters of the 
distribution, r, and y. Effectively, this determination 
is based on a set of equations that depend upon how 
the internal friction data are measured, i.e. at a constant 
temperature or at a constant moment of inertia. 

For instance, by using a forced oscillating system, F 
can be measured together with G1 over a wide interval 
of frequency at a fixed temperature. In this way, if 
Gl(to) reaches the asymptotic limits for very high and 
low frequencies Gu and Gr respectively, then A is 
calculated straightforwardly. Hence, on considering that 
the maximum of the internal friction peak is Fmax = aJ 
2, the parameter y is derived using eqn. (5). Finally, 
~'t arises directly from eqn. (6). 

On the other hand, by employing a freely oscillating 
torsional pendulum, the internal friction and the fre- 
quency of oscillation, f, can be measured at different 
temperatures but at a fixed moment of inertia, L In 
this situation the dynamic modulus GI is related to the 
angular velocity to= 2"rrf according to G =klto 2, k being 
a geometrical constant. Hence eqn. (1) can be rewritten 
as  

to2(T)__to.2_ to (T)-to (7) 
1 + [to(T)z,(T)] 2"(D (7) 

The temperature dependences of to, and (.o r are de- 
termined from the asymptotes of to(T) at low and high 
temperatures, respectively. Unlike in the previous anal- 
ysis, y(T) cannot be determined from the maximum 

since it varies with temperature; thus additional mea- 
surements must be included. By using a torsional pen- 
dulum with a variable moment of inertia [6], it is 
possible to measure the partial derivative of F with 
respect to to at a constant temperature. Thus eqn. (6) 
leads to the equation 

01n0 In Fto r = - Y(7) tanh{y(7) In[tot,(7)]} (8) 

which together with eqns. (4)-(7) constitutes a system 
of equations yielding the values of A, y and r, at each 
temperature. 

3. Applications 

Firstly, it is interesting to notice that eqn. (6) has 
been proposed empirically for various materials [5]. 
For instance, Gaudaud and Woirgard [7] described the 
internal friction of phosphorous-doped silicon by 

F = / ~  ((OTto) a 
1 + (to~'m) 2" (9) 

a being a constant which is equivalent to the parameter 
y of the MAE, while % =  ft. Both parameters are 
derived directly from eqn. (4) assuming that a=/~. 

Secondly, it should be pointed out that in order to 
apply this procedure, the experimental data of F, to 
and a In F/a In to must be accurately measured. However, 
in their work [2] Nowick and Berry remarked that 
accuracy is not usually attained in measurements of 
to(T). Moreover, very accurate data found in the lit- 
erature gave only the internal friction and frequency 
dependence on temperature but not the partial deriv- 
ative. Because of this, a set of precise measurements 
are being performed using the torsional pendulum with 
a variable moment of inertia [6]. Meanwhile, in order 
to solve the system given by eqns. (4)-(8), the simulated 
data shown in Fig. 1 are proposed both for F(T) and 
to(T). Figure 2 shows the excellent agreement between 
the values of y(7) and A(7) calculated from the system 
and those proposed. Also, it is determined that In % = In 
Zo + AH/kT, i.e. the proposed temperature dependence 
of T t . 

Another application is based on the set of internal 
friction peaks illustrated in Fig. 3, which can be treated 
in terms of an MAE. These peaks correspond to forced 
oscillation measurements in atactic polystyrene (PS) at 
various temperatures and were described using a 
log-normal distribution function [9] with /3= 1.6 by 
applying the methodology developed by Nowick and 
Berry [2]. Since A >> 1 for PS, the inflection point of 
G1 at to=~--1 is to the left of the peak centred at 
to =~t-1. Thus in the frequency range where the whole 
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Fig. 1. F, to and a In F/a In to vs. temperature calculated from 
eqns. (6)-(8) respectively with ~(T)=-2.35X 10-3T+1.82 and 
In ~'= -30  + 1.17 × 104/T. tou(T) and tot(T) are represented by the 
dashed lines. 
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Fig. 2. Temperature dependence of parameters 3' and A cor- 
responding to the peak shown in Fig. 1. The full curves represent 
the simulated values for these parameters. 

internal friction peak is measured the curve of Gl(to) 
does not exhibit its inflection point. That  is, the mea- 
surements of G1 are not sufficiently extended to guar- 
antee the values of  G ,  and G r at each temperature.  
Thus eqn. (1) cannot be considered, so it is intended 
to determine the pa ramete r  3" from the limit of eqn. 
(8), i.e. 

0 In F 
] = ± 3' (10) 

0 1 n w  r 

where the plus and minus signs correspond to the limits 
at very low and high frequencies respectively. For each 
peak the asymptotes are not clearly defined and only 
a mean value can be calculated at each temperature.  
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Fig. 3. Internal friction peaks measured at various temperatures 
in atactic polystyrene [8]. 
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Fig. 4. Temperature dependence of characteristic time ft. The 
straight line corresponds to eqn. (11). 

These values lead to y = 0.65 + 0.5, which is independent  
of  the temperature.  This value of 3' corresponds to a 
symmetrical distribution function of halfwidth 
/3 = 1.6 + 0.3 [10], which includes the value derived from 
Nowick and Berry's procedure.  Once 3" is known, the 
evaluation of eqn. (8) at the intermediate frequencies 
leads to the values of ~'t presented in Fig. 4. These 
characteristic times depend on the temperature  ac- 
cording to 

r ,= ro exp k ( ~ - -  Tc) 

where M-/ is the activation enthalpy, % is a pre- 
exponential  factor, T¢ is a critical temperature  and k 
is Boltzmann's  constant. Both the activation enthalpy 
AH=21 .6  kJ mo1-1 and the critical tempera ture  
Tc = 300.6 K derived from the values of  r, at various 
tempera tures  are coincident with those determined by 
Povolo [9] on assuming the validity of the Wil- 
l iams-Landel -Fer ry  relationship [11]. Furthermore,  it 
is also established that A depends on the tempera ture  
as A at ( T - T o )  -1, indicating that the ordering energy 
is also allowed to depend on the existing state of order. 
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Fig. 5. Intrinsic damping and square of oscillation frequency vs. 
temperature in PMMA for two slightly different moments of 
inertia, / i  and I 2. 

Finally, the dynamical data measured by Povolo and 
Lambri [12] in atactic poly(methylmethacrylate) 
(PMMA) and presented in Fig. 5 are considered. As 
mentioned in Section 2, when the internal friction peak 
is measured as a function of temperature, the partial 
derivative a In F/a In to must also be measured in order 
to determine A and the parameters of the distribution. 
Because of this, Fig. 5 shows one peak and the cor- 
responding curve of frequency measured at one moment 
of inertia, 11, while the second peak and the respective 
frequencies correspond to another moment of inertia, 
12. According to eqn. (8), if the procedure of the MAE 
is valid, la In F/a In tolr must be lower than y(T). 
However, the derivative calculated from Fig. 5 takes 
values greater than 20. This apparent contradiction is 
due to the non-linear behaviour of PMMA. Effectively, 
Povolo and Lambri [12] measured internal friction peaks 
at a fixed temperature but at different strain amplitudes 
and found that the damping is strain dependent. 

4. D i s c u s s i o n  

It has been shown how the temperature dependence 
of the relaxation strength and the parameters of a 
symmetrical distribution function can be calculated from 
a single internal friction peak if GI(T) and a In F/a In 
to are also measured. It should be noticed that in 
principle this procedure could be applied to curves 
measured as a function of temperature or frequency, 
but for A>> 1 it is difficult to get these parameters 
from the latest curves. Effectively, as pointed out in 

the previous section, the limits tou and ('Or are found 
only if the measurements cover many orders of mag- 
nitude of frequency. Since this is not empirically possible, 
3/ may be calculated from the limits of the partial 
derivative. These limits correspond to the tails of the 
internal friction peak where there is much more error, 
particularly at high frequencies where the background 
increases. Consequently, it is much more appropriate 
to employ the torsional pendulum with a variable mo- 
ment of inertia, measuring the internal friction and the 
frequency as a function of temperature at two slightly 
different moments of inertia. Effectively, because of 
the thermal activation, the interval of temperature 
needed to determine both Gu and Gr can be swept in 
any laboratory. Furthermore, the improvement of a 
variable moment of inertia allows one to measure the 
dependence on frequency through a In F/a In to. 

Even considering data determined as a function of 
frequency, the various applications show that the pro- 
cedure of the MAE gives a relaxation strength, a 
characteristic time and a halfwidth of the distribution 
function which are very similar to those derived by 
Nowick and Berry. A detailed comparison between their 
procedure and that of the MAE will be given in a 
forthcoming paper. In particular, that paper will show 
that ~/= [r2(~) ]- 1, where r2(fl) is the relative peak width 
defined by Nowick and Berry (ref. 4, p. 99). 

However, the method proposed in this paper enables 
us to calculate the temperature dependence of the 
relaxation strength and of the parameters of a sym- 
metrical distribution function from a single internal 
friction peak measured together with to and a In F/a 
In to. 

Finally, from the data of PMMA it was shown that 
the procedure of the MAE gives absurd results when 
a non-linear viscoelastic material is treated. 
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